{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 使用日志记录器跟踪大语言模型使用情况\n\nAutoGen中包含的模型客户端会发出结构化事件,可用于跟踪模型使用情况。本笔记本演示如何使用日志记录器来跟踪模型使用。\n\n这些事件会被记录到名为 :py:attr:`autogen_core.EVENT_LOGGER_NAME` 的日志记录器中。\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import logging\n", "\n", "from autogen_core.logging import LLMCallEvent\n", "\n", "\n", "class LLMUsageTracker(logging.Handler):\n", " def __init__(self) -> None:\n", " \"\"\"Logging handler that tracks the number of tokens used in the prompt and completion.\"\"\"\n", " super().__init__()\n", " self._prompt_tokens = 0\n", " self._completion_tokens = 0\n", "\n", " @property\n", " def tokens(self) -> int:\n", " return self._prompt_tokens + self._completion_tokens\n", "\n", " @property\n", " def prompt_tokens(self) -> int:\n", " return self._prompt_tokens\n", "\n", " @property\n", " def completion_tokens(self) -> int:\n", " return self._completion_tokens\n", "\n", " def reset(self) -> None:\n", " self._prompt_tokens = 0\n", " self._completion_tokens = 0\n", "\n", " def emit(self, record: logging.LogRecord) -> None:\n", " \"\"\"Emit the log record. To be used by the logging module.\"\"\"\n", " try:\n", " # 如果消息是StructuredMessage的实例,则使用该类型\n", " if isinstance(record.msg, LLMCallEvent):\n", " event = record.msg\n", " self._prompt_tokens += event.prompt_tokens\n", " self._completion_tokens += event.completion_tokens\n", " except Exception:\n", " self.handleError(record)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "然后,可以像其他Python日志记录器一样附加此记录器,并在模型运行后读取记录值\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from autogen_core import EVENT_LOGGER_NAME\n", "\n", "# 设置日志配置以使用自定义处理器\n", "logger = logging.getLogger(EVENT_LOGGER_NAME)\n", "logger.setLevel(logging.INFO)\n", "llm_usage = LLMUsageTracker()\n", "logger.handlers = [llm_usage]\n", "\n", "# client.create(...)\n", "\n", "print(llm_usage.prompt_tokens)\n", "print(llm_usage.completion_tokens)" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 2 }