autogen_core.model_context._buffered_chat_completion_context 源代码

from typing import List

from pydantic import BaseModel
from typing_extensions import Self

from .._component_config import Component
from ..models import FunctionExecutionResultMessage, LLMMessage
from ._chat_completion_context import ChatCompletionContext


class BufferedChatCompletionContextConfig(BaseModel):
    buffer_size: int
    initial_messages: List[LLMMessage] | None = None


[文档] class BufferedChatCompletionContext(ChatCompletionContext, Component[BufferedChatCompletionContextConfig]): """一个缓冲的聊天完成上下文,保留最近 n 条消息的视图, 其中 n 是缓冲区大小。缓冲区大小在初始化时设置。 Args: buffer_size (int): 缓冲区大小。 initial_messages (List[LLMMessage] | None): 初始消息。 """ component_config_schema = BufferedChatCompletionContextConfig component_provider_override = "autogen_core.model_context.BufferedChatCompletionContext" def __init__(self, buffer_size: int, initial_messages: List[LLMMessage] | None = None) -> None: super().__init__(initial_messages) if buffer_size <= 0: raise ValueError("buffer_size must be greater than 0.") self._buffer_size = buffer_size
[文档] async def get_messages(self) -> List[LLMMessage]: """获取最多 `buffer_size` 条最近的消息。""" messages = self._messages[-self._buffer_size :] # Handle the first message is a function call result message. if messages and isinstance(messages[0], FunctionExecutionResultMessage): # Remove the first message from the list. messages = messages[1:] return messages
[文档] def _to_config(self) -> BufferedChatCompletionContextConfig: return BufferedChatCompletionContextConfig( buffer_size=self._buffer_size, initial_messages=self._initial_messages )
[文档] @classmethod def _from_config(cls, config: BufferedChatCompletionContextConfig) -> Self: return cls(**config.model_dump())