群智协作#

Swarm 实现了一种团队模式,其中智能体可以根据能力将任务交接给其他智能体。 这是由 OpenAI 在 Swarm 中首次提出的多智能体设计模式。 核心思想是让智能体通过特殊工具调用将任务委托给其他智能体,同时 所有智能体共享相同的消息上下文。 这使得智能体能够对任务规划做出本地决策,而不是 像 SelectorGroupChat 那样依赖中央协调器。

备注

Swarm 是高级 API。如果您需要更多 不受此 API 支持的控制和自定义,可以查看 核心 API 文档中的交接模式 并实现自己的群智协作模式版本。

工作原理#

Swarm 团队本质上是一个群聊, 智能体轮流生成响应。 与 SelectorGroupChatRoundRobinGroupChat 类似, 参与智能体广播它们的响应,因此所有智能体共享相同的消息上下文。

与其他两种群聊团队不同的是,在每一轮中, 发言智能体是根据上下文中最近的 HandoffMessage 消息选择的。 这自然要求团队中的每个智能体都能够生成 HandoffMessage 来表明 它将任务交接给哪些其他智能体。

对于 AssistantAgent,您可以设置 handoffs 参数来指定它可以交接给哪些智能体。您可以使用 Handoff 来自定义消息 内容和交接行为。

整体流程可以总结如下:

  1. 每个智能体都能够生成 HandoffMessage 来表明它可以交接给哪些其他智能体。对于 AssistantAgent,这意味着设置 handoffs 参数。

  2. 当团队开始执行任务时,第一个发言智能体处理任务并做出本地决策,决定是否交接以及交接给谁。

  3. 当智能体生成 HandoffMessage 时,接收智能体接管具有相同消息上下文的任务。

  4. 该过程持续进行,直到满足终止条件。

备注

AssistantAgent 使用模型的工具调用 能力来生成交接。这意味着模型必须 支持工具调用。如果模型支持并行工具调用,可能会同时生成多个交接。 这可能导致意外行为。 为避免这种情况,您可以通过配置模型客户端来禁用并行工具调用。 对于 OpenAIChatCompletionClientAzureOpenAIChatCompletionClient, 您可以在配置中设置 parallel_tool_calls=False

在本节中,我们将向您展示两个使用 Swarm 团队的示例:

  1. 带有人工介入交接的客户支持团队。

  2. 用于内容生成的自主团队。

客户支持示例#

客户支持

该系统实现了航班退款场景,包含两个智能体:

  • 旅行代理:处理一般旅行和退款协调。

  • 航班退款专员:专门处理航班退款,具有 refund_flight 工具。

此外,我们让用户与智能体交互,当智能体交接给 "user" 时。

工作流程#

  1. 旅行代理 发起对话并评估用户请求。

  2. 根据请求:

    • 对于退款相关任务,旅行代理交接给 航班退款专员

    • 对于需要客户提供的信息,任一智能体都可以交接给 "user"

  3. 航班退款专员 在适当时使用 refund_flight 工具处理退款。

  4. 如果智能体交接给 "user",团队执行将停止并等待用户输入响应。

  5. 当用户提供输入时,它会作为 HandoffMessage 发送回团队。此消息定向到最初请求用户输入的智能体。

  6. 该过程持续进行,直到旅行代理确定任务完成并终止工作流程。

from typing import Any, Dict, List

from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import HandoffTermination, TextMentionTermination
from autogen_agentchat.messages import HandoffMessage
from autogen_agentchat.teams import Swarm
from autogen_agentchat.ui import Console
from autogen_ext.models.openai import OpenAIChatCompletionClient

工具#

def refund_flight(flight_id: str) -> str:
    """Refund a flight"""
    return f"Flight {flight_id} refunded"

智能体#

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
    # api_key="YOUR_API_KEY",
)

travel_agent = AssistantAgent(
    "travel_agent",
    model_client=model_client,
    handoffs=["flights_refunder", "user"],
    system_message="""You are a travel agent.
    The flights_refunder is in charge of refunding flights.
    If you need information from the user, you must first send your message, then you can handoff to the user.
    Use TERMINATE when the travel planning is complete.""",
)

flights_refunder = AssistantAgent(
    "flights_refunder",
    model_client=model_client,
    handoffs=["travel_agent", "user"],
    tools=[refund_flight],
    system_message="""You are an agent specialized in refunding flights.
    You only need flight reference numbers to refund a flight.
    You have the ability to refund a flight using the refund_flight tool.
    If you need information from the user, you must first send your message, then you can handoff to the user.
    When the transaction is complete, handoff to the travel agent to finalize.""",
)
termination = HandoffTermination(target="user") | TextMentionTermination("TERMINATE")
team = Swarm([travel_agent, flights_refunder], termination_condition=termination)
task = "I need to refund my flight."


async def run_team_stream() -> None:
    task_result = await Console(team.run_stream(task=task))
    last_message = task_result.messages[-1]

    while isinstance(last_message, HandoffMessage) and last_message.target == "user":
        user_message = input("User: ")

        task_result = await Console(
            team.run_stream(task=HandoffMessage(source="user", target=last_message.source, content=user_message))
        )
        last_message = task_result.messages[-1]


# 如果在脚本中运行,请使用 asyncio.run(...)。
await run_team_stream()
await model_client.close()
---------- user ----------
I need to refund my flight.
---------- travel_agent ----------
[FunctionCall(id='call_ZQ2rGjq4Z29pd0yP2sNcuyd2', arguments='{}', name='transfer_to_flights_refunder')]
[Prompt tokens: 119, Completion tokens: 14]
---------- travel_agent ----------
[FunctionExecutionResult(content='Transferred to flights_refunder, adopting the role of flights_refunder immediately.', call_id='call_ZQ2rGjq4Z29pd0yP2sNcuyd2')]
---------- travel_agent ----------
Transferred to flights_refunder, adopting the role of flights_refunder immediately.
---------- flights_refunder ----------
Could you please provide me with the flight reference number so I can process the refund for you?
[Prompt tokens: 191, Completion tokens: 20]
---------- flights_refunder ----------
[FunctionCall(id='call_1iRfzNpxTJhRTW2ww9aQJ8sK', arguments='{}', name='transfer_to_user')]
[Prompt tokens: 219, Completion tokens: 11]
---------- flights_refunder ----------
[FunctionExecutionResult(content='Transferred to user, adopting the role of user immediately.', call_id='call_1iRfzNpxTJhRTW2ww9aQJ8sK')]
---------- flights_refunder ----------
Transferred to user, adopting the role of user immediately.
---------- Summary ----------
Number of messages: 8
Finish reason: Handoff to user from flights_refunder detected.
Total prompt tokens: 529
Total completion tokens: 45
Duration: 2.05 seconds
---------- user ----------
Sure, it's 507811
---------- flights_refunder ----------
[FunctionCall(id='call_UKCsoEBdflkvpuT9Bi2xlvTd', arguments='{"flight_id":"507811"}', name='refund_flight')]
[Prompt tokens: 266, Completion tokens: 18]
---------- flights_refunder ----------
[FunctionExecutionResult(content='Flight 507811 refunded', call_id='call_UKCsoEBdflkvpuT9Bi2xlvTd')]
---------- flights_refunder ----------
Tool calls:
refund_flight({"flight_id":"507811"}) = Flight 507811 refunded
---------- flights_refunder ----------
[FunctionCall(id='call_MQ2CXR8UhVtjNc6jG3wSQp2W', arguments='{}', name='transfer_to_travel_agent')]
[Prompt tokens: 303, Completion tokens: 13]
---------- flights_refunder ----------
[FunctionExecutionResult(content='Transferred to travel_agent, adopting the role of travel_agent immediately.', call_id='call_MQ2CXR8UhVtjNc6jG3wSQp2W')]
---------- flights_refunder ----------
Transferred to travel_agent, adopting the role of travel_agent immediately.
---------- travel_agent ----------
Your flight with reference number 507811 has been successfully refunded. If you need anything else, feel free to let me know. Safe travels! TERMINATE
[Prompt tokens: 272, Completion tokens: 32]
---------- Summary ----------
Number of messages: 8
Finish reason: Text 'TERMINATE' mentioned
Total prompt tokens: 841
Total completion tokens: 63
Duration: 1.64 seconds

股票研究示例#

股票研究

该系统通过协调四个智能代理执行股票研究任务:

  • 规划器:核心协调者,根据专业领域将特定任务分配给专业代理。规划器确保每个代理被高效利用,并监督整体工作流程。

  • 金融分析师:专业代理,负责使用get_stock_data等工具分析财务指标和股票数据。

  • 新闻分析师:专注于收集和总结与股票相关的近期新闻文章,使用get_news等工具。

  • 撰写者:负责将股票和新闻分析结果汇编成连贯的最终报告。

工作流程#

  1. 规划器通过逐步分配任务的方式启动研究流程。

  2. 每个代理独立执行任务,并将其工作内容附加到共享的消息线程/历史记录中。所有代理都向该共享历史贡献内容并从中读取信息,而非直接向规划器返回结果。当代理使用LLM生成工作时,它们可以访问这个共享消息历史,这提供了上下文并有助于跟踪任务整体进展。

  3. 代理完成任务后,将控制权交还给规划器。

  4. 该过程持续进行,直到规划器判定所有必要任务已完成并决定终止工作流程。

工具#

async def get_stock_data(symbol: str) -> Dict[str, Any]:
    """Get stock market data for a given symbol"""
    return {"price": 180.25, "volume": 1000000, "pe_ratio": 65.4, "market_cap": "700B"}


async def get_news(query: str) -> List[Dict[str, str]]:
    """Get recent news articles about a company"""
    return [
        {
            "title": "Tesla Expands Cybertruck Production",
            "date": "2024-03-20",
            "summary": "Tesla ramps up Cybertruck manufacturing capacity at Gigafactory Texas, aiming to meet strong demand.",
        },
        {
            "title": "Tesla FSD Beta Shows Promise",
            "date": "2024-03-19",
            "summary": "Latest Full Self-Driving beta demonstrates significant improvements in urban navigation and safety features.",
        },
        {
            "title": "Model Y Dominates Global EV Sales",
            "date": "2024-03-18",
            "summary": "Tesla's Model Y becomes best-selling electric vehicle worldwide, capturing significant market share.",
        },
    ]
model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
    # api_key="YOUR_API_KEY",
)

planner = AssistantAgent(
    "planner",
    model_client=model_client,
    handoffs=["financial_analyst", "news_analyst", "writer"],
    system_message="""You are a research planning coordinator.
    Coordinate market research by delegating to specialized agents:
    - Financial Analyst: For stock data analysis
    - News Analyst: For news gathering and analysis
    - Writer: For compiling final report
    Always send your plan first, then handoff to appropriate agent.
    Always handoff to a single agent at a time.
    Use TERMINATE when research is complete.""",
)

financial_analyst = AssistantAgent(
    "financial_analyst",
    model_client=model_client,
    handoffs=["planner"],
    tools=[get_stock_data],
    system_message="""You are a financial analyst.
    Analyze stock market data using the get_stock_data tool.
    Provide insights on financial metrics.
    Always handoff back to planner when analysis is complete.""",
)

news_analyst = AssistantAgent(
    "news_analyst",
    model_client=model_client,
    handoffs=["planner"],
    tools=[get_news],
    system_message="""You are a news analyst.
    Gather and analyze relevant news using the get_news tool.
    Summarize key market insights from news.
    Always handoff back to planner when analysis is complete.""",
)

writer = AssistantAgent(
    "writer",
    model_client=model_client,
    handoffs=["planner"],
    system_message="""You are a financial report writer.
    Compile research findings into clear, concise reports.
    Always handoff back to planner when writing is complete.""",
)
# 定义终止条件
text_termination = TextMentionTermination("TERMINATE")
termination = text_termination

research_team = Swarm(
    participants=[planner, financial_analyst, news_analyst, writer], termination_condition=termination
)

task = "Conduct market research for TSLA stock"
await Console(research_team.run_stream(task=task))
await model_client.close()
---------- user ----------
Conduct market research for TSLA stock
---------- planner ----------
[FunctionCall(id='call_BX5QaRuhmB8CxTsBlqCUIXPb', arguments='{}', name='transfer_to_financial_analyst')]
[Prompt tokens: 169, Completion tokens: 166]
---------- planner ----------
[FunctionExecutionResult(content='Transferred to financial_analyst, adopting the role of financial_analyst immediately.', call_id='call_BX5QaRuhmB8CxTsBlqCUIXPb')]
---------- planner ----------
Transferred to financial_analyst, adopting the role of financial_analyst immediately.
---------- financial_analyst ----------
[FunctionCall(id='call_SAXy1ebtA9mnaZo4ztpD2xHA', arguments='{"symbol":"TSLA"}', name='get_stock_data')]
[Prompt tokens: 136, Completion tokens: 16]
---------- financial_analyst ----------
[FunctionExecutionResult(content="{'price': 180.25, 'volume': 1000000, 'pe_ratio': 65.4, 'market_cap': '700B'}", call_id='call_SAXy1ebtA9mnaZo4ztpD2xHA')]
---------- financial_analyst ----------
Tool calls:
get_stock_data({"symbol":"TSLA"}) = {'price': 180.25, 'volume': 1000000, 'pe_ratio': 65.4, 'market_cap': '700B'}
---------- financial_analyst ----------
[FunctionCall(id='call_IsdcFUfBVmtcVzfSuwQpeAwl', arguments='{}', name='transfer_to_planner')]
[Prompt tokens: 199, Completion tokens: 337]
---------- financial_analyst ----------
[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_IsdcFUfBVmtcVzfSuwQpeAwl')]
---------- financial_analyst ----------
Transferred to planner, adopting the role of planner immediately.
---------- planner ----------
[FunctionCall(id='call_tN5goNFahrdcSfKnQqT0RONN', arguments='{}', name='transfer_to_news_analyst')]
[Prompt tokens: 291, Completion tokens: 14]
---------- planner ----------
[FunctionExecutionResult(content='Transferred to news_analyst, adopting the role of news_analyst immediately.', call_id='call_tN5goNFahrdcSfKnQqT0RONN')]
---------- planner ----------
Transferred to news_analyst, adopting the role of news_analyst immediately.
---------- news_analyst ----------
[FunctionCall(id='call_Owjw6ZbiPdJgNWMHWxhCKgsp', arguments='{"query":"Tesla market news"}', name='get_news')]
[Prompt tokens: 235, Completion tokens: 16]
---------- news_analyst ----------
[FunctionExecutionResult(content='[{\'title\': \'Tesla Expands Cybertruck Production\', \'date\': \'2024-03-20\', \'summary\': \'Tesla ramps up Cybertruck manufacturing capacity at Gigafactory Texas, aiming to meet strong demand.\'}, {\'title\': \'Tesla FSD Beta Shows Promise\', \'date\': \'2024-03-19\', \'summary\': \'Latest Full Self-Driving beta demonstrates significant improvements in urban navigation and safety features.\'}, {\'title\': \'Model Y Dominates Global EV Sales\', \'date\': \'2024-03-18\', \'summary\': "Tesla\'s Model Y becomes best-selling electric vehicle worldwide, capturing significant market share."}]', call_id='call_Owjw6ZbiPdJgNWMHWxhCKgsp')]
---------- news_analyst ----------
Tool calls:
get_news({"query":"Tesla market news"}) = [{'title': 'Tesla Expands Cybertruck Production', 'date': '2024-03-20', 'summary': 'Tesla ramps up Cybertruck manufacturing capacity at Gigafactory Texas, aiming to meet strong demand.'}, {'title': 'Tesla FSD Beta Shows Promise', 'date': '2024-03-19', 'summary': 'Latest Full Self-Driving beta demonstrates significant improvements in urban navigation and safety features.'}, {'title': 'Model Y Dominates Global EV Sales', 'date': '2024-03-18', 'summary': "Tesla's Model Y becomes best-selling electric vehicle worldwide, capturing significant market share."}]
---------- news_analyst ----------
Here are some of the key market insights regarding Tesla (TSLA):

1. **Expansion in Cybertruck Production**: Tesla has increased its Cybertruck production capacity at the Gigafactory in Texas to meet the high demand. This move might positively impact Tesla's revenues if the demand for the Cybertruck continues to grow.

2. **Advancements in Full Self-Driving (FSD) Technology**: The recent beta release of Tesla's Full Self-Driving software shows significant advancements, particularly in urban navigation and safety. Progress in this area could enhance Tesla's competitive edge in the autonomous driving sector.

3. **Dominance of Model Y in EV Sales**: Tesla's Model Y has become the best-selling electric vehicle globally, capturing a substantial market share. Such strong sales performance reinforces Tesla's leadership in the electric vehicle market.

These developments reflect Tesla's ongoing innovation and ability to capture market demand, which could positively influence its stock performance and market position. 

I will now hand off back to the planner.
[Prompt tokens: 398, Completion tokens: 203]
---------- news_analyst ----------
[FunctionCall(id='call_pn7y6PKsBspWA17uOh3AKNMT', arguments='{}', name='transfer_to_planner')]
[Prompt tokens: 609, Completion tokens: 12]
---------- news_analyst ----------
[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_pn7y6PKsBspWA17uOh3AKNMT')]
---------- news_analyst ----------
Transferred to planner, adopting the role of planner immediately.
---------- planner ----------
[FunctionCall(id='call_MmXyWuD2uJT64ZdVI5NfhYdX', arguments='{}', name='transfer_to_writer')]
[Prompt tokens: 722, Completion tokens: 11]
---------- planner ----------
[FunctionExecutionResult(content='Transferred to writer, adopting the role of writer immediately.', call_id='call_MmXyWuD2uJT64ZdVI5NfhYdX')]
---------- planner ----------
Transferred to writer, adopting the role of writer immediately.
---------- writer ----------
[FunctionCall(id='call_Pdgu39O6GMYplBiB8jp3uyN3', arguments='{}', name='transfer_to_planner')]
[Prompt tokens: 599, Completion tokens: 323]
---------- writer ----------
[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_Pdgu39O6GMYplBiB8jp3uyN3')]
---------- writer ----------
Transferred to planner, adopting the role of planner immediately.
---------- planner ----------
TERMINATE
[Prompt tokens: 772, Completion tokens: 4]
---------- Summary ----------
Number of messages: 27
Finish reason: Text 'TERMINATE' mentioned
Total prompt tokens: 4130
Total completion tokens: 1102
Duration: 17.74 seconds
TaskResult(messages=[TextMessage(source='user', models_usage=None, content='Conduct market research for TSLA stock', type='TextMessage'), ToolCallRequestEvent(source='planner', models_usage=RequestUsage(prompt_tokens=169, completion_tokens=166), content=[FunctionCall(id='call_BX5QaRuhmB8CxTsBlqCUIXPb', arguments='{}', name='transfer_to_financial_analyst')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='planner', models_usage=None, content=[FunctionExecutionResult(content='Transferred to financial_analyst, adopting the role of financial_analyst immediately.', call_id='call_BX5QaRuhmB8CxTsBlqCUIXPb')], type='ToolCallExecutionEvent'), HandoffMessage(source='planner', models_usage=None, target='financial_analyst', content='Transferred to financial_analyst, adopting the role of financial_analyst immediately.', type='HandoffMessage'), ToolCallRequestEvent(source='financial_analyst', models_usage=RequestUsage(prompt_tokens=136, completion_tokens=16), content=[FunctionCall(id='call_SAXy1ebtA9mnaZo4ztpD2xHA', arguments='{"symbol":"TSLA"}', name='get_stock_data')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='financial_analyst', models_usage=None, content=[FunctionExecutionResult(content="{'price': 180.25, 'volume': 1000000, 'pe_ratio': 65.4, 'market_cap': '700B'}", call_id='call_SAXy1ebtA9mnaZo4ztpD2xHA')], type='ToolCallExecutionEvent'), TextMessage(source='financial_analyst', models_usage=None, content='Tool calls:\nget_stock_data({"symbol":"TSLA"}) = {\'price\': 180.25, \'volume\': 1000000, \'pe_ratio\': 65.4, \'market_cap\': \'700B\'}', type='TextMessage'), ToolCallRequestEvent(source='financial_analyst', models_usage=RequestUsage(prompt_tokens=199, completion_tokens=337), content=[FunctionCall(id='call_IsdcFUfBVmtcVzfSuwQpeAwl', arguments='{}', name='transfer_to_planner')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='financial_analyst', models_usage=None, content=[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_IsdcFUfBVmtcVzfSuwQpeAwl')], type='ToolCallExecutionEvent'), HandoffMessage(source='financial_analyst', models_usage=None, target='planner', content='Transferred to planner, adopting the role of planner immediately.', type='HandoffMessage'), ToolCallRequestEvent(source='planner', models_usage=RequestUsage(prompt_tokens=291, completion_tokens=14), content=[FunctionCall(id='call_tN5goNFahrdcSfKnQqT0RONN', arguments='{}', name='transfer_to_news_analyst')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='planner', models_usage=None, content=[FunctionExecutionResult(content='Transferred to news_analyst, adopting the role of news_analyst immediately.', call_id='call_tN5goNFahrdcSfKnQqT0RONN')], type='ToolCallExecutionEvent'), HandoffMessage(source='planner', models_usage=None, target='news_analyst', content='Transferred to news_analyst, adopting the role of news_analyst immediately.', type='HandoffMessage'), ToolCallRequestEvent(source='news_analyst', models_usage=RequestUsage(prompt_tokens=235, completion_tokens=16), content=[FunctionCall(id='call_Owjw6ZbiPdJgNWMHWxhCKgsp', arguments='{"query":"Tesla market news"}', name='get_news')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='news_analyst', models_usage=None, content=[FunctionExecutionResult(content='[{\'title\': \'Tesla Expands Cybertruck Production\', \'date\': \'2024-03-20\', \'summary\': \'Tesla ramps up Cybertruck manufacturing capacity at Gigafactory Texas, aiming to meet strong demand.\'}, {\'title\': \'Tesla FSD Beta Shows Promise\', \'date\': \'2024-03-19\', \'summary\': \'Latest Full Self-Driving beta demonstrates significant improvements in urban navigation and safety features.\'}, {\'title\': \'Model Y Dominates Global EV Sales\', \'date\': \'2024-03-18\', \'summary\': "Tesla\'s Model Y becomes best-selling electric vehicle worldwide, capturing significant market share."}]', call_id='call_Owjw6ZbiPdJgNWMHWxhCKgsp')], type='ToolCallExecutionEvent'), TextMessage(source='news_analyst', models_usage=None, content='Tool calls:\nget_news({"query":"Tesla market news"}) = [{\'title\': \'Tesla Expands Cybertruck Production\', \'date\': \'2024-03-20\', \'summary\': \'Tesla ramps up Cybertruck manufacturing capacity at Gigafactory Texas, aiming to meet strong demand.\'}, {\'title\': \'Tesla FSD Beta Shows Promise\', \'date\': \'2024-03-19\', \'summary\': \'Latest Full Self-Driving beta demonstrates significant improvements in urban navigation and safety features.\'}, {\'title\': \'Model Y Dominates Global EV Sales\', \'date\': \'2024-03-18\', \'summary\': "Tesla\'s Model Y becomes best-selling electric vehicle worldwide, capturing significant market share."}]', type='TextMessage'), TextMessage(source='news_analyst', models_usage=RequestUsage(prompt_tokens=398, completion_tokens=203), content="Here are some of the key market insights regarding Tesla (TSLA):\n\n1. **Expansion in Cybertruck Production**: Tesla has increased its Cybertruck production capacity at the Gigafactory in Texas to meet the high demand. This move might positively impact Tesla's revenues if the demand for the Cybertruck continues to grow.\n\n2. **Advancements in Full Self-Driving (FSD) Technology**: The recent beta release of Tesla's Full Self-Driving software shows significant advancements, particularly in urban navigation and safety. Progress in this area could enhance Tesla's competitive edge in the autonomous driving sector.\n\n3. **Dominance of Model Y in EV Sales**: Tesla's Model Y has become the best-selling electric vehicle globally, capturing a substantial market share. Such strong sales performance reinforces Tesla's leadership in the electric vehicle market.\n\nThese developments reflect Tesla's ongoing innovation and ability to capture market demand, which could positively influence its stock performance and market position. \n\nI will now hand off back to the planner.", type='TextMessage'), ToolCallRequestEvent(source='news_analyst', models_usage=RequestUsage(prompt_tokens=609, completion_tokens=12), content=[FunctionCall(id='call_pn7y6PKsBspWA17uOh3AKNMT', arguments='{}', name='transfer_to_planner')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='news_analyst', models_usage=None, content=[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_pn7y6PKsBspWA17uOh3AKNMT')], type='ToolCallExecutionEvent'), HandoffMessage(source='news_analyst', models_usage=None, target='planner', content='Transferred to planner, adopting the role of planner immediately.', type='HandoffMessage'), ToolCallRequestEvent(source='planner', models_usage=RequestUsage(prompt_tokens=722, completion_tokens=11), content=[FunctionCall(id='call_MmXyWuD2uJT64ZdVI5NfhYdX', arguments='{}', name='transfer_to_writer')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='planner', models_usage=None, content=[FunctionExecutionResult(content='Transferred to writer, adopting the role of writer immediately.', call_id='call_MmXyWuD2uJT64ZdVI5NfhYdX')], type='ToolCallExecutionEvent'), HandoffMessage(source='planner', models_usage=None, target='writer', content='Transferred to writer, adopting the role of writer immediately.', type='HandoffMessage'), ToolCallRequestEvent(source='writer', models_usage=RequestUsage(prompt_tokens=599, completion_tokens=323), content=[FunctionCall(id='call_Pdgu39O6GMYplBiB8jp3uyN3', arguments='{}', name='transfer_to_planner')], type='ToolCallRequestEvent'), ToolCallExecutionEvent(source='writer', models_usage=None, content=[FunctionExecutionResult(content='Transferred to planner, adopting the role of planner immediately.', call_id='call_Pdgu39O6GMYplBiB8jp3uyN3')], type='ToolCallExecutionEvent'), HandoffMessage(source='writer', models_usage=None, target='planner', content='Transferred to planner, adopting the role of planner immediately.', type='HandoffMessage'), TextMessage(source='planner', models_usage=RequestUsage(prompt_tokens=772, completion_tokens=4), content='TERMINATE', type='TextMessage')], stop_reason="Text 'TERMINATE' mentioned")